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1. Introduction

The calculation of the inverse of the summation of matrices is an operation that one comes
across frequently in different scientific disciplines. One of the most known examples is the
receptance matrix which plays a very important role in the mechanical vibration area.
As is known the receptance matrix (also called the frequency response matrix) is an important

matrix which interrelates the input and output of a damped linear discrete mechanical system
which is subject to harmonical forcing as input. There are many publications in the literature on
this subject. Some of the recent publications are Refs. [1–3]. Yang presented in Ref. [1] an exact
method for evaluating the receptances of non-proportionally damped dynamic systems. Based on
a decomposition of the damping matrix, an iteration procedure is developed which does not
require matrix inversion. In Ref. [2], Lin and Lim developed a new and effective method to derive
structural design sensitivities which include both frequency response function sensitivities and
eigenvalue and eigenvector sensitivities from limited vibration test data. The study of Mottershead
[3] was concerned with the zeros of structural frequency response functions and their sensitivities.
The recent study in Ref. [4] is concerned with a viscously damped linear mechanical system, the

co-ordinates of which are assumed to be subject to several constraint equations. The frequency
response matrix of the constrained system described above is established in terms of the frequency
response matrix of the unconstrained system and the coefficient vectors of the constraint
equations.
This study has been motivated by Yang’s article [1]. In his paper, an iterative method was

developed for the calculation of the receptance matrix when the damping matrix was decomposed
into the sum of dyadic products. It was specifically pointed out that there was no need to applying
an inverse operation of matrices during the iteration procedure. In Yang’s method, first the
iteration process starts with the receptance matrix of the undamped system. Then the application
of iteration, using as many iterations as the number of dyadic products in the damping matrix,

ARTICLE IN PRESS

*Corresponding author. Fax: +212-245-07-95.

E-mail address: gurgozem@itu.edu.tr (M. G .urg .oze).

0022-460X/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(02)01507-9



gives the receptance matrix of the damped system. In getting to the final form of the iteration
equation, a formula which is known as the Sherman–Morrison formula [5] in the matrix literature,
used for obtaining the inverse of the summation of a regular matrix, and a dyadic product was
also utilized.
The aim of this study is to show that it is possible to obtain the receptance matrix directly

without using the iterations which were used in Ref. [1]. In this frame, a more general procedure of
obtaining the inverse of the sum of a regular matrix and any symmetric, positive semi-definite
matrix, is taken into account. Subsequently, a new formula is given to obtain the inverse of the
general problem mentioned before. The present formulation does not require any iterations but it
needs one more inverse operation in addition to Yang’s procedure. Actually, both Ref. [1] and the
present procedure require the inverse operation for obtaining the receptance matrix of the
undamped system. The new formulation is based on the fact that a symmetric and positive semi-
definite matrix can be expressed as the sum of dyadic products [6].
As it is known, the Sherman–Morrison formula is useful in obtaining the inverse of a regular

matrix and only one dyadic product (i.e., rank 1). On the other hand, the Woodbury formula gives
the inverse of the sum of a regular matrix and a matrix product whose rank can be grater than 1
(rank rX1) [5].
The new methodology formulated in this study makes it possible to put any number of dyadic

products by expressing it in terms of a matrix product (rX1) into a form where the Woodbury
formula can be used.
In the following section, after a brief introduction, the procedure followed in Ref. [1] will be

summarized, both, from the point of completeness and that of clarity for the readers’
understanding. In Section 3, the derivation of the new formula which was mentioned above
will be given. In the last section, the calculation of receptance matrix by using the new formula
without iteration will be given.

2. Theory

The motion of a viscously damped linear mechanical system with n-degrees-of-freedom which is
harmonically excited, is governed in the physical space by the matrix differential equation of order
two

M.qðtÞ þD’qðtÞ þ KqðtÞ ¼ %Feiot; ð1Þ

where M, D and K are the (n� n) mass, damping and stiffness matrices, respectively. q is the
(n� 1) vector of generalized co-ordinates. %F is the forcing vector and o denotes the forcing
frequency.
Substitution of

qðtÞ ¼ %qeiot ð2Þ

into Eq. (1) yields the relation

%q ¼ HðoÞ %F ð3Þ
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between the constant part of the input and response vectors. The complex matrix

HðoÞ ¼ ð�o2Mþ ioDþ KÞ�1 ð4Þ

is referred to as the (complex) frequency response matrix or the receptance matrix. It is also
referred to as the admittance matrix or dynamic influence coefficient matrix [7]. It is assumed that
the mechanical system given in Eq. (1) is non-proportionally damped.

2.1. The iteration method in Ref. [1]

A brief summary of the iteration method in Ref. [1] will be given to familiarize the reader with
the procedure.
The starting point of the method is the relation

HðoÞ ¼ Iþ ioH0ðoÞD½ ��1H0ðoÞ ð5Þ

used also in Ref. [8]. The derivation of Eq. (5) is given in the appendix. H0ðoÞ; represents the
receptance matrix of the undamped system where D ¼ 0; and has the following form:

H0ðoÞ ¼ ð�o2Mþ KÞ�1: ð6Þ

Let the rank of damping matrix D be rpn. It is possible to express D as

D ¼ wKDwT ¼
Xr

k¼1

dkwkw
T
k ð7Þ

since D is a symmetric, positive semi-definite matrix.
In Eq. (7), KD is

KD ¼ diagðd1ydr 0y0ÞARn�n; w ¼ w1ywn

� �
ARn�n: ð8Þ

Also in Eq. (7) dk’s represent real and positive scalars and wk’s represent real and linear
independent vectors. Even though in the expansion of D in the form of (7), dk and wk can be used
as the eigensolutions or eigenvalues and eigenvectors of D, but it is not necessary.
If relation (7) is used for the damping matrix, then Eq. (5) will be as follows:

H�1ðoÞ ¼ H�1
0 ðoÞ þ io

Xr

k¼1

dkwkw
T
k ; ð9Þ

where H�1ðoÞ and H�1
0 ðoÞ are inverses of the matrices HðoÞ and H0ðoÞ; respectively.

Let HcðoÞ be a sequence of intermediate receptance matrices and be defined as

H�1
c ðoÞ ¼ H�1

0 ðoÞ þ io
Xc
k¼1

dkwkw
T
k ðc ¼ 1;y; rÞ: ð10Þ

It can easily be seen that HcðoÞ are symmetric and because of Eqs. (9) and (10),

HðoÞ ¼ HrðoÞ: ð11Þ

On the other hand, based on Eq. (10), it is obvious that one can write the following expression:

H�1
cþ1ðoÞ ¼ H

�1
c oð Þ þ iodcþ1wcþ1w

T
cþ1: ð12Þ
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The last relation can be put into the following form:

Hcþ1ðoÞ ¼ Iþ iodcþ1HcðoÞwcþ1w
T
cþ1

� ��1
HcðoÞ; ð13Þ

when the formula

ðKþ uvTÞ�1 ¼ K�1 � K�1uð1þ vTKuÞ�1vTK�1 ð14Þ

is used for obtaining the inverse of the sum of a square matrix and a dyadic product and known as
the Sherman–Morrison formula in the literature, expression (13) will take the following form:

Hcþ1ðoÞ ¼ I�
iodcþ1HcðoÞwcþ1w

T
cþ1

1þ iodcþ1w
T
cþ1HcðoÞwcþ1

" #
HcðoÞ: ð15Þ

Thus, after calculating the receptance matrix H0ðoÞ of the undamped system, the receptance
matrix of the damped system can be obtained by using Eq. (15) at the end of c ¼ 0; 1;y; r � 1
successive iterations.

2.2. The derivation of the new formula

In this section, it will be shown that it is possible to calculate the receptance matrix of a non-
proportionally damped system directly without using any iteration. In this context, a new formula
for calculating the inverse of the sum of a square matrix and another matrix which is composed of
any number of (r) dyadic products, will be derived.
Let A represent the regular matrix and B represent the sum of the dyadic products. The

question is to find the inverse of A+B.
Let the dimension of A be (n� n). The dimensions of column vectors xi and yi are (n� 1). Let B

represent the sum of r dyadic products of vectors xi and yi:

B ¼
Xr

i¼1

xiy
T
i : ð16Þ

It is obvious that the sum of r dyadic products can be written as

B ¼ x1x2yxn½ �

yT1

yT2

^

yTn

2
6664

3
7775: ð17Þ

At this point the following definitions are made:

X 	 x1x2yxn½ �; Y 	 y1y2yyn

� �
: ð18Þ

With the aid of these matrices, the matrix B in (16) can be expressed as follows:

B ¼ XYT: ð19Þ

At this step, the formula

ðKþUVTÞ�1 ¼ K�1 � K�1UðIþ VTK�1UÞ�1VTK�1 ð20Þ
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will be used. Eq. (20) is also known as the Woodbury formula in the literature. As it can be seen
from Eq. (20), the Woodbury formula gives the inverse of the sum of a regular square matrix
(n� n), and a product of two matrices whose rank is r. It is obvious that when the rank r=1, then
Woodbury formula reduces to that of Sherman–Morrison [5].
In the present case, if the following notations

U ¼ X; V ¼ Y ð21Þ

are used in (20), then

ðAþ XYTÞ�1 ¼ A�1 � A�1XðIþ YTA�1XÞ�1YTA�1 ð22Þ

is obtained. This is no more than the relation that is required.

2.3. The expression of the receptance matrix with the aid of the new formula

After obtaining Eq (22) in the preceeding section, it is now quite easy to calculate the receptance
matrix HðoÞ of the dynamical system defined by Eq. (1).
If the following correspondence:

A #¼K� o2M; X ¼ d1w1d2w2ydnwn

� �
;

Y ¼ w1w2ywn

� �
; ð23Þ

between the general formula and the dynamical system and also Eq. (6)–(8) are used, then the
receptance matrix HðoÞ can be obtained as

HðoÞ ¼ ðK� o2Mþ ioDÞ�1

¼H0ðoÞ½I� ðioXÞðIþ YTH0ðoÞðioXÞÞ
�1YTH0ðoÞ�: ð24Þ

As it is seen from Eq. (24), the receptance matrix HðoÞ of the non-proportionally damped system
can be calculated with the aid of the receptance matrix, H0ðoÞ; of the undamped system and the
eigencharacteristics of the damping matrix D without using any iteration.

3. Numerical evaluations

This section is devoted to the numerical evaluation of the formulae obtained. The simple system
in Fig. 1 is taken as an illustrative example. Assume that the following numerical values are
chosen for the physical parameters of the system:

k1 ¼ 2 N=m; k2 ¼ 1 N=m; m1 ¼ 2 kg; m2 ¼ 1 kg;

c1 ¼ 0:35N=m=s; c2 ¼ 0:15 N=m=s; c3 ¼ 0:05 N=m=s;

o ¼ 1 rad=s:

The numerical values above yield the following system matrices:

M ¼
2 0

0 1

" #
; K ¼

3 �1

�1 1

" #
; D ¼

0:40 �0:05

�0:05 0:20

" #
:
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The receptance matrix given in Eq. (4) is obtained as

HðoÞ ¼
0:01707933� 0:18402976i �0:91587897� 0:13140408i

�0:91587897� 0:13140408i �0:88599015� 0:45345616i

" #
:

The eigencharacteristics of the damping matrix D are

d1 ¼ 0:41180340; d2 ¼ 0:18819660

w1 ¼
�0:97324899

0:22975292

" #
; w2 ¼

�0:22975292

�0:97324899

" #
:

By using d1, d2, w1 and w2; the matrices X and Y can be obtained in the following form:

X ¼
�0:40078724 �0:04323872

0:09461303 �0:18316215

" #
;

Y ¼
�0:97324899 �0:22975292

0:22975292 �0:97324899

" #
:

The correctness of the formula can be checked by forming the following matrix product:

XYT ¼
0:40 �0:05

�0:05 0:20

" #
¼ D:

As it is seen from the above equation, the matrix product XYT equals the damping matrix D.
On the other hand, the matrix H0ðoÞ given by Eq. (6) can easily be obtained as follows:

H0ðoÞ ¼
0 �1

�1 �1

" #
:
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If the matrices X, Y and H0ðoÞ given above are taken into Eq. (24), then exact correspondence
between the new and old HðoÞ; is obtained:

HðoÞ ¼
0:01707933� 0:18402976i �0:91587897� 0:13140408i

�0:91587897� 0:13140408i �0:88599015� 0:45345616i

" #
:

This is the same as the one obtained directly from expression (4).

4. Conclusions

This study is concerned with a novel representation of the receptance matrix, which plays a very
important role in the investigation of the linear vibrational systems excited harmonically. In this
context, first the damping matrix is written as the sum of dyadic products then the sum is put into
the form of the product of two matrices.
Consequently, it is possible to express the receptance matrix of the damped system in terms of

the receptance matrix of the undamped system and the product of matrices, which represent the
damping by using the Woodbury formula.

Appendix A

Let us assume that Eq. (5) is correct:

HðoÞ ¼ ½Iþ ioH0ðoÞD��1H0ðoÞ:

First, the explicit form of H0ðoÞ can be put into the above equation:

HðoÞ ¼ ½Iþ ioð�o2Mþ KÞ�1D��1ð�o2Mþ KÞ�1:

If the inverse of the last relation is taken, then the relation

H�1ðoÞ ¼ ð�o2Mþ KÞ½Iþ ioð�o2Mþ KÞ�1D�

will be obtained. After some manipulations, the following expression:

H�1ðoÞ ¼ ð�o2Mþ KÞ þ ioD

can be obtained. If the inverse of the last equation is taken, then it is arrived at the

HðoÞ ¼ ð�o2Mþ Kþ ioDÞ�1:

This is the definition of the receptance matrix given in Eq. (4).
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